Assessment Schedule 2006

Scholarship Chemistry (93102)

Evidence Statement

Question	Evidence	1–4 marks	5–6 marks	7–8 marks	
1(a)	Cl ₂ are non-polar so held together by weak temporary dipole dipole attractions. Low size of $\Delta_{\rm fus}H^{\rm o}$ and $\Delta_{\rm vao}H^{\rm o}$ reflect small amount of energy required to break these forces and separate particles in both solid and liquid phases. NaCl has strong ionic forces between the ions so a large amount of energy is needed to disrupt the lattice and even more to separate the ions and vaporise them. Large difference between $\Delta_{\rm fus}H^{\rm o}$ and $\Delta_{\rm vap}H^{\rm o}$ in NaCl reflects energy needed to separate ions from each other when changing from liquid to gas. Small difference between $\Delta_{\rm fus}H^{\rm o}$ and $\Delta_{\rm vap}H^{\rm o}$ in Cl ₂ because forces between molecules of Cl ₂ similar in both phases. Ie solid to liquid – E needed to disrupt the lattice Liquid to Gas – E- needed to completely separate particles.	Shows some understanding of forces involved and/or $\Delta_{\text{fus}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ And/or links between these AND / OR Correct method for calculation with limited errors	For 1(a) Correct discussion of forces for both substances linked to $\Delta_{\text{fus}}H^{\text{o}}$ and $\Delta_{\text{vap}}H^{\text{o}}$ Part (i)	thows some inderstanding of forces avolved and/or C and C correct discussion of forces for both substances linked to $\Delta_{\text{fus}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ between these linked to $\Delta_{\text{fus}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$ between and $\Delta_{\text{vap}}H^{\circ}$ and $\Delta_{$	discussion of forces for both substances and with comparison between $\Delta_{\text{fus}}H$ and $\Delta_{\text{vap}}H^{\circ}$ AND Correction calculations and discussions for
(b) (i)	$Na(g) \rightarrow Na^{+}(g) + e^{-}$ $\Delta H = 502 \text{ kJ mol}^{-1}$ $Cl(g) + e^{-} \rightarrow Cl^{-}(g)$ $\Delta H = -355 \text{ kJ mol}^{-1}$ Adding these: $Na(g) + Cl(g) \rightarrow Na^{+}(g) + Cl^{-}(g) \Delta H = 502 - 355$ $= 147 \text{ kJ mol}^{-1}$ From (i) transfer of electrons to form ions is endothermic so reaction would not be spontaneous.		OR For 1(a) Both correct forces identified OR definitions of $\Delta_{\text{fus}}H^{\circ}$ and $\Delta_{\text{vap}}H^{\circ}$		
(ii)	Lattice enthalpy: ΔH for NaCl(s) \rightarrow Na ⁺ (g) + Cl ⁻ (g) Na(g) + Cl(g) \rightarrow Na ⁺ (g) + Cl ⁻ (g) $\Delta H = 147 \text{ kJ mol}^{-1}$ (OR Na(g) \rightarrow Na ⁺ (g) + e ⁻ $\Delta H = 502 \text{ kJ mol}^{-1}$ Cl(g) + e ⁻ \rightarrow Cl ⁻ (g) $\Delta H = -355 \text{ kJ mol}^{-1}$) NaCl(s) \rightarrow Na(s) + Cl ₂ (g) $\Delta H = +411 \text{ kJ mol}^{-1}$ Na(s) \rightarrow Na(l) \rightarrow Na(g) $\Delta H = 104 + 2.6 = 106.6 \text{ kJ mol}^{-1}$ $\frac{1}{2}$ Cl ₂ (g) \rightarrow Cl(g) $\Delta H = \frac{1}{2} \times 242 = 121 \text{ kJ mol}^{-1}$ Adding these: NaCl(s) \rightarrow Na ⁺ (g) + Cl ⁻ (g) $\Delta H = 147 + 411 + 106.6 + 121 = 785.6 \text{ kJ mol}^{-1}$ (790)		For 1(b) Correction calculations and discussions 1 mark – Correct calculation OR calculation error with correct follow on discussion 2 marks –		
	$\Delta H = 147 + 411 + 106.6 + 121 = 785.6 \text{ kJ mol}^{-1}(790)$		discussion		

Question	Evidence	1–4 marks	5–6 marks	7–8 marks
2(a)	 Mg 2,8,2 Na 2,8,1 Difference between II and III: third e⁻ is removed from shell closer to nucleus. Large difference between × and XI because XI is E for e⁻ in shell closer to the nucleus and so it is held more strongly. III to × (OR I to II) increasing because as e⁻ removed the repulsions between the e⁻s in the shell are reduced so e⁻ are closer to the nucleus (or e⁻ removed from a more positive particle). III to × (OR I to II) increase is gradual because successive e⁻ removed are from the same E level. 1st I.E. for Mg is bigger than for Na as the increased nuclear charge will provide a stronger attraction for the e⁻. (OR Energy required to remove the inner core e⁻ from Mg will be higher because of the increased charge on the nucleus). I.E. similar for Na and Mg because they have similar e-arrangements and with the valence e⁻ in same shell. 	Some aspects of the following correct: Relates changes to e arrangement OR Recognises reasons for large changes OR gradual increase OR compares Na and Mg AND / OR Some of: Structure of 6-carbon acid or ester with chiral	Discussion shows some understanding of reasons for large changes and gradual increases in relation to the e- arrangement and compares and contrasts Mg and Na AND There is some recognition of the nature of Structure A and r B	For 2(a) Discussion shows understanding of reasons for large changes and gradual increases in relation to the e arrangement and compares and contrasts Mg and Na AND Structure A with corresponding Structure B recognised WITH justification that includes link to solubility mark
2(b)	Compound A: could be ester or acid. As B is different from A the original compound is an ester. Extraction of acidification product into the ether layer suggests a water insoluble compound is formed. This could be a long chain alcohol or carboxylic acid. Possible structures for ester with chiral carbon: CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH	carbon OR discussion of polarity 2 marks – At least one of Structure A with corresponding Structure B 3 marks		

Scholarship (Chemistry 93102) — page 3

Question	Evidence	1–4 marks	5–6 marks	7–8 marks
3	Functional group changes: Alcohol to ketone use $Cr_2O_7^{2-}/H^+$ Alcohol to acid use $Cr_2O_7^{2-}/H^+$ Alkene to alcohol use $H_2SO_4(aq)$ OR $H_3PO_4(aq)$ (heat) Ester to alcohol use $H_2SO_4(aq)$ Order: Use $Cr_2O_7^{2-}/H^+$, then $H_2SO_4(aq)$ Otherwise alcohol that is created by the the hydrolysis of the ester would then be oxidized to a ketone with the $Cr_2O_7^{2-}/H^+$. (Note: the alcohol formed in the adition reaction is a tertiary alcohol and is not affected by the reaction with $Cr_2O_7^{2-}/H^+$.) By-products: Addition of H_2O to alkene could result in $-OH$ on other end of double bond (minor product). Oxidation of alcohol to carboxylic acid could result in some aldehyde. Hydrolysis of ester results in ethanoic acid.	Some aspects of reagents AND / OR, by-products recognised.	Most aspects of reactions recognised with small omissions.	All functional group changes correctly identified with correct and sensible discussion re order. By-products including second addition product recognised.

		ı	1	
4(a)	Solution A : pH > 7. Solution reacts with water to produce OH^- . Weak base so only partial hydrolysis $CH_3NH_2 + H_2O \rightarrow CH_3NH_3^+ + OH^-$ Solution B : pH < 7. CH_3NH_3CI dissolves in water to give $CH_3NH_3^+$ which reacts with water to produce H_3O^+ . Weak acid so only partial hydrolysis $CH_3NH_3^+ + H_2O \rightarrow CH_3NH_2 + H_3O^+$ Solution C: pH > 7 (= 10.6) Solution is a buffer as both acid and conjugate base are present. Equimolar amounts so pH = pK_a	Some aspects of calculations or discussions correct.		Calculations carried out correctly and related discussion complete with correct equations where relevant.
(b)	HC1 + CH ₃ NH ₂ \rightarrow CH ₃ NH ₃ ⁺ + Cl ⁻ n(HCl) = 0.1 × 0.015 = 1.5 × 10 ⁻³ mol n(CH ₃ NH ₂) = 0.1 × 0.025 = 2.5 × 10 ⁻³ mol After reaction: n(CH ₃ NH ₂) = 1.0 × 10 ⁻³ mol c(CH ₃ NH ₂) = 2.5 × 10 ⁻² n(CH ₃ NH ₃ ⁺) = 1.5 × 10 ⁻³ mol, c(CH ₃ NH ₃ ⁺) = 3.75 × 10 ⁻² $K_a = 2.51 \times 10^{-11} = [\text{CH}_3\text{NH}_2] [\text{H}_3\text{O}^+] / [\text{CH}_3\text{NH}_3^+]$ $[\text{H}_3\text{O}^+] = 2.51 \times 10^{-11} \times 3.75 \times 10^{-2} / 2.5 \times 10^{-2}$ pH = 10.4			
(c)	In solution A Cu(OH) ₂ dissolves because Cu ²⁺ forms a complex ion and hence is removed from the solubility equilibrium and so more Cu(OH) ₂ dissolves. $ \text{Cu(OH)}_2(s) \rightarrow \text{Cu}^{2+}(aq) + 2\text{OH}^-(aq) $ $ \text{Cu}^{2+} + 4\text{CH}_3\text{NH}_2 \rightarrow [\text{Cu(CH}_3\text{NH}_2)_4]^{2+} $ In Solution B Cu(OH) ₂ dissolves because CH ₃ NH ₃ ⁺ is a weak acid and will reacts to neutralise OH ⁻ . Removing OH ⁻ from the equilibrium and causes more Cu(OH) ₂ to dissolve. $ \text{CH}_3\text{NH}_3^+ + \text{OH}^- \rightarrow \text{CH}_3\text{NH}_2 + \text{H}_2\text{O} $			
(d)	$\begin{aligned} &\text{Mg}^{2^{+}}(aq) \ + \ 2\text{OH}^{-}(aq) \ \rightarrow \ \text{Mg}(\text{OH})_{2}(s) \\ &\text{For precipitation } [\text{Mg}^{2^{+}}] [\text{OH}^{-}]^{2} > 1.5 \times 10^{-11} \\ &[\text{Mg}^{2^{+}}] = 0.1 \ \text{mol L}^{-1} \ [\text{OH}^{-}]^{2} = 1.5 \times 10^{-11} / \ 0.1 = 1.5 \times 10^{-10} \\ &[\text{OH}^{-}] = 1.22 \times 10^{-5} \ \text{ and } \ [\text{H}_{3}\text{O}^{+}] = 8.2 \times 10^{-10} \end{aligned}$ $\text{To achieve this pH need a buffer}$ $\text{CH}_{3}\text{NH}_{3}^{+} + \text{H}_{2}\text{O} \rightarrow \text{CH}_{3}\text{NH}_{2} + \text{H}_{3}\text{O}^{+} \\ &K_{a} = 2.51 \times 10^{-11} = [\text{CH}_{3}\text{NH}_{2}] \ [\text{H}_{3}\text{O}^{+}] / [\text{CH}_{3}\text{NH}_{3}^{+}] \\ &[\text{CH}_{3}\text{NH}_{3}^{+}] = 0.1 \times 8.2 \times 10^{-10} / 2.51 \times 10^{-11} = 3.27 \ \text{mol L}^{-1} \\ &\text{m}(\text{CH}_{3}\text{NH}_{3}\text{Cl}) = 3.27 \times 67.5 = 221 \ \text{g} \end{aligned}$			

5(a)	 In solution: Na⁺, I⁻ H₂O At (+) electrode 2I⁻ → I₂ + 2e⁻ Observe brown colour of I₂ At (-) electrode 2H₂O + 2e⁻ → H₂ + 2OH⁻ Observe phenolphthalein will turn pink, bubbles of gas. Reason: From E^o data: I⁻ is more easily oxidised than water as it is the reductant in the couple with the lower E^o value. And H₂O is more easily reduced than Na⁺ as it is the oxidant in the couple with the higher E^o value. 	For 5(a) Some observations linked to species with some attempt at justification OR recognition of strongest oxidant and reductant based on E° values AND / OR Spontaneous reactions recognized with reasons	For 5(a) Some correct observations linked to E° data given AND One or two spontaneous reactions correctly identified with supporting evidence and attempts to correctly balance equations	For 5(a) Principles of electrolysis correctly identified with correct observations linked to E° data given AND Two spontaneous reactions correctly identified with supporting evidence and balanced equations
(b)	For the reaction of IO ⁻ to form IO ₃ ⁻ and I ₂ $E^{\circ}_{\text{reaction}} = E^{\circ}_{\text{red}} - E^{\circ}_{\text{ox}} = 0.45 - 0.14 > 0 \text{ hence spontaneous}$ $5IO^{-} + 2H_{2}O \rightarrow IO_{3}^{-} + 2I_{2} + 4OH^{-}$ For the reaction of I ₂ to form IO ⁻ to form I ⁻ $E^{\circ}_{\text{reaction}} = E^{\circ}_{\text{red}} - E^{\circ}_{\text{ox}} = 0.54 - 0.45 > 0 \text{ hence spontaneous}$ $I_{2} + H_{2}O \rightarrow IO^{-} + I^{-} + 2H^{+}$ $OR I_{2} + 2OH^{-} \rightarrow IO^{-} + I^{-} + H_{2}O$ For IO ₃ ⁻ $E^{\circ}_{\text{ox}} > E^{\circ}_{\text{red}}$ so not spontaneous			

6(a)	 Vigorous swirling (would assist in dissolving the iodine but) could cause it the reaction product (I⁻) to be oxidized to I₂ so that more I₂ generated. Allowing solutions to stand could cause volatile I₂ to be lost. If sufficient iodide is added to convert the I₂ produced to I₃⁻ then both solubility and volatility problems can be minimized. Increase n(S₂O₃²⁻) then n(Vit C) less than actual OR decrease n(S₂O₃²⁻) then n(Vit C) more than actual. 	Some aspects of practical techniques correctly discussed AND / OR Some steps in calculation correct	Most aspects of practical techniques correctly discussed AND / OR Most steps in calculation correct	Correctly discusses most aspects of practical technique including the significance of the results AND Correctly carries out calculation with
(b)	Standard solution: $c(BrO_3^-) = 1.33 \text{ g}/167 \text{ g mol}^{-1} \times 1/0.5000 \text{ L} \times 1/5 \\ = 0.00319 \text{ mol L}^{-1} \\ n(BrO_3^-)_{added} = 0.01404 \text{ L} \times 0.00319 \text{ mol L}^{-1} = 4.47 \times 10^{-5} \\ \text{mol} \\ n(S_2O_3^{-2}) = 0.00238 \text{ mol L}^{-1} \times 0.00236 \text{ L} = 5.617 \times 10^{-6} \text{ mol} \\ n(BrO_3^-)_{excess} = n(S_2O_3^{-2})/6 = 9.38 \times 10^{-7} \\ n(BrO_3^-)_{used} = 4.47 \times 10^{-5} - 9.38 \times 10^{-7} = 4.38 \times 10^{-5} \text{ mol} \\ n(Vit C) = 3 \text{ n}(BrO_3^-) = 1.31 \times 10^{-4} \text{ mol} \\ n(Vit C) = 176 \times 1.31 \times 10^{-4} = 23.1 \text{ mg in 50 mL} \\ (46.2 \text{ mg per 100 mL}) \\ \text{Titre used to calculate excess bromine used is very small and hence percentage error would be large so accuracy of results is limited.} \\ \text{Alternative methods} \\ n(Br_2)_{added} = 3 \times n(BrO_3^-)_{added} = 3 \times 4.47 \times 10^{-5} \text{ mol} \\ = 1.341 \times 10^{-4} \text{ mol} \\ n(I_2) = n(S_2O_3^{-2})/2 = 5.617 \times 10^{-6} = 2.808 \times ^{-6} = n(Br_2)_{excess} \\ n(Br_2)_{reacted} = 1.341 \times 10^{-4} - 2.808 \times 10^{-6} = 1.338 \times 10^{-4} \text{ mol} \\ = n(Vit C) \\ m(Vit C) = 1.313 \times 10^{-4} \text{ mol} \times 176 = 23.1 \text{ mg in 50mL} \\ \text{OR} \\ n(Br_2) = 3 \times n(BrO_3^-) = 3 \times 4.47 \times 10^{-5} \text{ mol} \\ = 1.341 \times 10^{-4} \text{ mol} \\ \text{Would give m}(Vit C) = 1.341 \times 10^{-4} \text{ mol} \times 176 = 23.6 \text{ mg} \\ n(Br_2)_{excess} = n(I_2) = n(S_2O_3^{-2})/2 = 5.617 \times 10^{-6} = 2.808 \times ^{-6} \\ \text{Would give m}(Vit C) = 2.808 \times ^{-6} \times 176 = 0.494 \text{ mg} \\ \text{Actual Vit C} = 23.6 - 0.5 \text{ mg} = 23.1 \text{ mg in 50mL} \\ \text{New poly model} = 1.341 \times 10^{-4} \text{ mol} \times 176 = 2.808 \times ^{-6} \times 176 = 0.494 \text{ mg} \\ \text{Actual Vit C} = 23.6 - 0.5 \text{ mg} = 23.1 \text{ mg in 50mL} \\ \text{New poly model} = 1.341 \times 10^{-4} \text{ mol} \times 176 = 2.808 \times ^{-6} \times 176 = 0.494 \text{ mg} \\ \text{Actual Vit C} = 23.6 - 0.5 \text{ mg} = 23.1 \text{ mg in 50mL} \\ \text{New poly model} = 1.341 \times 10^{-4} \text{ mol} \times 176 = 2.808 \times ^{-6} \times 176 = 0.494 \text{ mg} \\ \text{Actual Vit C} = 23.6 - 0.5 \text{ mg} = 23.1 \text{ mg in 50mL} \\ \text{New poly model} = 1.341 \times 10^{-4} \text{ mol} \times 176 = 2.808 \times ^{-6} \times 176 = 0.494 \text{ mg} \\ \text{Actual Vit C} = 23.6 - 0.5 \text{ mg} = 23.1 \text{ mg} \text{ in 50mL} \\ New poly$			correct number of significant figures.